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1.    Introduction; 

Let B be a p*p symmetric matrix having the Wishart distribution 

(1.1) W   (B|l|f)dB = C f|B|(f"P-1)/2  e-1/2  trB dB  , 
P pf   ' 

(1.2) C'l =   2fp/2 

where 

and dB stands for the product of the differentials of the p(p+l)/2 

i=i x   2   ' 

distinct elements of B.    Let x and ^ be  two vector variables of p 

components,  distributed independently of B,  and also independently of 

each other,  as 

(1.3)  * -1/2^dx    , 
(2TT)

P/2 

and 

(1.4)  ^ e-1/2 *"* dZ 

(2Tr)P/2 

respectively.    While considering the problem of multivariate statistical 

outliers, Wilks   (1963)   used statistics of the type. 

♦Research supported by ONR Contract NÖOO14-68-A-0515,  Department of 
Statistics THEMIS Project. 
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(1.5) r -  \B + %£' |/|B + JCX' + n.' I   '    s -   |B + xx' |/|B + J«'  + ^ I   , 

He has remarked that the exact distribution  (joint)  of r and s is compli- 

cated and has given the expected values,  variances and covariance of r 

and s.    Unfortunately, his expressions for the variance and covariance 

are in error.    The purpose of this note is to derive the exact joint 

distribution of r and s  and to give correct expressions for the moments. 

2.     Joint distribution; 

In the joint distribution of B,  x and ^ ,  make the following 

tr cms formation 

(2.1) A = B + x x'   + ^ ^   , 

u = A x     , 

Ä-
1/2 

V «  A Z     » 

where A    is any matrix such that A    • A    = A  . The Jacobian 

of transformation from B to A is 1 and that from x to u or ^ to v^ is 

|A|   and hence, the joint distribution of A, u and v^ comes out as 

(f+2)-p-l f-p-1 

(2.2) —B£- |A| e'VS trA , |! _ ^. _ ^ j  2 dAdudv  , 
(2IT)

P 

as   |B| = |A - A1/2uu' A1/2 - A1/2vv' A1/21 = | A| 11 - uu' - vv' |  . 

This shows that A has a Wishart distribution of f+2 degrees of freedom 

and is independent of ii and v^ . Splitting the constant suitably, the 

joint distribution of \i and v^ is 

f-p-1 

(2.3)     [U+l)   li-uu'-vv'I  2  dudv  . 
(2Tr)Pr(f-p+l) 

Observe that the statistics r,  s of Wilks are given by 

IB+^X' | |A-xx'| 
(2.4) r =   =   |l - uu* |   = 1 - u'u    , 

| B+xx' -t-yy' | | A | 

-      ■        -    ■*■•     i mm^am  —■"- 
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and 

(2.5) 
B+xx* 

v'v 
IB+xx*+77'I 

Also observe  that in  (2.3) 

]l - uu'  - vv' |  -  (1 - u'u)(1 - v'v)  -  (u'v)2 

(2.6) 
= rs -   (u'.v) 2 

In (2.3) , transform from v^ to w = [w  / w  , ..., w ] ' , by an orthogonal 

trans formation 

(2.7)    w = Lv , 

where 

L is a p*p orthogonal matrix,  whose last row is u'/Ai'u    .    The 

Jacobian of this transformation is   |L|   =1 and v^'v^ = w'w = 1-s  .    Also 

(2.8) u'v = u'L'Lv =   [0  ...   0,   /u'u ]w « /l-r  •  w 
—       - — P 

The joint distribution of u and w is, therefore, 

(2.9) 
r(f+i) 

(2iT)pr(f-p+i) 
|rs - (l-r)w2l dudw 

From u  ,  transform to r = 1 - u'u and p-1 other variables 

(2.10) 

1/2 
u.  =   (l-r)      cosct),   cos(|>_  ...  cos(j)    n   , J. i. z p-i 

.1/2. u.  =   (l-r)      cosij).   cosd).   ...   cosij)     . sin(|)     .,. 
D 1 2 V: P-D+l 

(j=2,   3,   ... p) 

Similarly,   transform from w to s = 1 - w'w and p-1 other variables 

V   e2 Vl ^ 

(2.11) 

1/2 
v,   =   (1-s)      cos6.   cosö.   ...   cosö    ,   , 1 12 p-i 

1/2 
v. =  (1-s)      cose    cose    ...  cose       sine    .+1 

(j=2,   3,   ..., p) 

 — m ■ ^-- - - -   ~- -  1       - -^ ^-^A^ ^^^^:^-^.^^,._  .^..^-^  A,^^^^ ^_—_■ ^^^-^^^ 



The Jacoblan of transformation fror, u to r,  $.,... $    .is — 1 p-1 

. ip-1   p-2     p-i-1 
~(l-r)* n    cos^. 
^ i-1 1 

and a similar expression in s and 6.   for the Jacoblan of transformation 

from w to s and the B's.    Now 6    ,  and $    ,  vary from 0 to 2IT,  the other — p-1 p-1        J 

e's and (ji's vary from -v/2 to Tr/2 while r and s vary from 0 to 1.     Inte- 

grating out all the t^'s and all 6's except 9     ,  we obtain the joint 

distribution of r,   s  and 6    as 

(2.12) r(f+l) 
f^l 

4TTr(p-i)r(f-p+i) jrs -   (1-r)(l-s)sin2el    2    cosP"2e drdsde 

where 9.  is replaced by 6 

The joint distribution of r,s alone can now be obtained by integrating 

out 6 but this does not seem to yield a manageable expression,  as  the 

bracket in   (2.12)   will have to be expanded in a series. 

3.    Moments of rys   . 

Only the product moment of r and s is difficult to obtain.    The 

mean and variance of r  (or s)  can be very easily obtained from the 

marginal distribution of r, which is related to the well-known Hotelling's 

T2 by r = —      .    .     In the joint distribution of u and v^ , given by 

(« 

(2.3),  if we transform to £ *  [z    ,   ...,  z ] '   from v^ by 

(3.1) v =   (I - uu,)1/2z      , 

we shall find that u and z  are independently distributed as 

f r(f/2) 
(3.2)    K(u f)du = 

-'  —   p/2/je ,  n,, 
TT^ (f-p)  j(f-p; 

I - uu 

f^ 
.1 2 du 

(3.3)    and K(z| f-l)dz , respectively. 



From (3.2), one can easily «how that 

(3.4) E(rh) ■ EU-u'u)11 - E|l - uu'l11 

,.™-.,    fg - h)r(f) 

This will also be the h     moment of s by symnetry.    This leads to 

(3.5) E(r)  .^.    v(r)   . ^EtJt£tiL_      . 
(f+2)2(f+4) 

Now Cov(r,a)  - E{ (1-u'u) (l-^* v) }  - E(r)E{s) 

- Etd-u'u) [l-zd-uuMzJ) - {E(r)}2    by   (3.1) 

- E(r)  - EiHz'z-U'u)2]} - {E(r))2 

(3.6) = E(r)   - E(r)E(z'z)   + E{r(z,u)2} -   {E(r)}2    , 

as £ and r are Independent.     Since z has the same distribution as u 

with f changed f-1  , 

E(z,z)  = 1 - E(l - u'u)  with f replaced by f-1 

(3.7) -^ 

Hence   (3.6)   reduces to 

(3.8) Cov(r,s)   =    -p(f-p+2)     + E{r(z.u)2}   . 
(f+1)(f+2;2 

Now 

(3.9) EfrU'u)2} = /(l-u'u) (z,u)2K(u|f)K(z|f-l)dudz 

v.',aere the integration is over the range of values of u and z  such that 

u'u i 1, £'£ i.  1 . Transform from £ to C =* EC,» ...»£]  by the 

tr ems formation 

C = Lz  , 

where L is already defined to be a p*p orthogonal matrix, whose last row 

is u*//u'u .    Then, 

j  1/2 
z'u = z'L'Lu = 5'Lu = 5 fu/u »  (1-r)       £ 

r: 

**"'"""  ~-J^-.~...-.» LM..—       ■  .^.  ., -A-.»........^...—^.    ^       ..,-...■     .-^ M (       .,!,.■■ ■    ^ A. 



M«nc«  (3.9)   r«duc«t  to 

(3.10)        /r(l-r)Mu|f)du • fO KC^f-nd^» K(r-r?»  • £ Bii'li   . <»"• 

to lynMtry of th« dUtrlbutlon of ^ .    NOM ^ HM th« •mm distribution 

M u with f roplacod by f-I and hmncm finally,   (3.10)  r«duc«f to 

(f*4)(f*2)       t*l 

Th« covarianc« between r and ■,  therefore,  !•  (fron (3.S)) 

/i in -2p(f-p*2) 
(3-ll) (fl)(f^(f4) 

Remark« t 

Wllks considers a sample of size n and has a Wlshart matrix based 

on n-1 degrees of freedom as deviations are from the sample means.    He 

then removes two observations as outliers and thus his  (n-1)-2 corresponds 

to our f .    His E(r)  agrees with our result, with this correspondence 

but the other moments are in error. 
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If B is a Wishart matrix and x, ^ are two vectors of p components each having 
a multinormal distribution and  if all these quantities are independently distributed« 
the  joint distribution of the  two statistics 

| B   +   xx' | 
- and s ■ ^—^—^—— 

|D ♦ ^z 
r ■ 

|B ♦  xx*   ♦ ^, | B ♦  »oc *   ♦ J^' | 

is derived in this paper. The correlation between r and a is also obtained, r and s 
are related to Hotellinq's T? and are useful in problems of testing multivariate 
outliers. 
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